%I #10 Sep 27 2021 07:56:01
%S 0,0,1,1,2,2,5,5,10,11,20,22,37,41,66,75,113,129,190,218,310,358,497,
%T 576,782,908,1212,1411,1851,2156,2793,3255,4163,4853,6142,7159,8972,
%U 10451,12989,15123,18646,21689,26561,30867,37556,43599,52743,61161,73593
%N Number of integer partitions of n with reverse-alternating product > 1.
%C All such partitions have odd length.
%C We define the alternating product of a sequence (y_1,...,y_k) to be Product_i y_i^((-1)^(i-1)). The reverse-alternating product is the alternating product of the reversed sequence.
%F a(n) = A344607(n) - A119620(n).
%e The a(2) = 1 through a(9) = 11 partitions:
%e (2) (3) (4) (5) (6) (7) (8) (9)
%e (211) (311) (222) (322) (332) (333)
%e (321) (421) (422) (432)
%e (411) (511) (431) (522)
%e (21111) (31111) (521) (531)
%e (611) (621)
%e (22211) (711)
%e (32111) (32211)
%e (41111) (42111)
%e (2111111) (51111)
%e (3111111)
%t altprod[q_]:=Product[q[[i]]^(-1)^(i-1),{i,Length[q]}];
%t Table[Length[Select[IntegerPartitions[n],altprod[Reverse[#]]>1&]],{n,0,30}]
%Y The strict case is A067659, except that a(0) = a(1) = 0.
%Y The even bisection is A236559.
%Y The non-reverse multiplicative version is A339890, weak A347456.
%Y The case of >= 1 instead of > 1 is A344607.
%Y The opposite version is A344608, also the non-reverse even-length case.
%Y The complement is counted by A347443, non-reverse A119620.
%Y Allowing any integer reverse-alternating product gives A347445.
%Y Allowing any integer alternating product gives A347446.
%Y Reverse version of A347448; also the odd-length case.
%Y The Heinz numbers of these partitions are the complement of A347450.
%Y The multiplicative version (factorizations) is A347705.
%Y A000041 counts partitions.
%Y A027187 counts partitions of even length.
%Y A027193 counts partitions of odd length.
%Y A100824 counts partitions of n with alternating sum <= 1.
%Y A103919 counts partitions by sum and alternating sum (reverse: A344612).
%Y A347462 counts possible reverse-alternating products of partitions.
%Y Cf. A000070, A008549, A086543, A182616, A236913, A325534, A325535, A344611, A347442, A347444, A347447, A347453, A347461, A347465.
%K nonn
%O 0,5
%A _Gus Wiseman_, Sep 16 2021