login

Reminder: The OEIS is hiring a new managing editor, and the application deadline is January 26.

a(n) = Sum_{d|n} 2^(tau(d) - 1).
4

%I #36 Oct 14 2021 08:48:18

%S 1,3,3,7,3,13,3,15,7,13,3,49,3,13,13,31,3,49,3,49,13,13,3,185,7,13,15,

%T 49,3,159,3,63,13,13,13,341,3,13,13,185,3,159,3,49,49,13,3,713,7,49,

%U 13,49,3,185,13,185,13,13,3,2275,3,13,49,127,13,159,3,49,13,159,3,2525,3,13,49,49

%N a(n) = Sum_{d|n} 2^(tau(d) - 1).

%H Seiichi Manyama, <a href="/A347405/b347405.txt">Table of n, a(n) for n = 1..10000</a>

%F If p is prime, a(p^n) = 2^(n+1) - 1.

%F G.f.: Sum_{k>=1} 2^(tau(k) - 1) * x^k/(1 - x^k).

%t a[n_] := DivisorSum[n, 2^(DivisorSigma[0, #] - 1) &]; Array[a, 80] (* _Amiram Eldar_, Oct 08 2021 *)

%o (PARI) a(n) = sumdiv(n, d, 2^(numdiv(d)-1));

%o (PARI) my(N=99, x='x+O('x^N)); Vec(sum(k=1, N, 2^(numdiv(k)-1)*x^k/(1-x^k)))

%Y Cf. A000005 (tau), A000225, A347991, A347992.

%K nonn

%O 1,2

%A _Seiichi Manyama_, Oct 08 2021