%I #19 Feb 24 2024 10:16:07
%S 1,1,1,1,1,1,1,1,10,1,1,10,1,1,10,1,1,10,1,1,10,1,1,10,26,1,10,1,1,35,
%T 1,1,10,1,26,10,1,1,10,26,1,10,1,1,35,1,1,10,50,26,10,1,1,10,26,50,10,
%U 1,1,35,1,1,59,1,26,10,1,1,10,75,1,10,1,1,35,1,50,10,1,26
%N Sum of squares of odd divisors of n that are <= sqrt(n).
%H David A. Corneth, <a href="/A347173/b347173.txt">Table of n, a(n) for n = 1..10000</a>
%F G.f.: Sum_{k>=1} (2*k - 1)^2 * x^((2*k - 1)^2) / (1 - x^(2*k - 1)).
%e a(18) = 10 as the odd divisors of 18 are the divisors of 9 which are 1, 3 and 9. Of those, 1 and 3 are <= sqrt(18) so we find the squares of 1 and 3 then add them i.e., a(18) = 1^2 + 3^2 = 10. - _David A. Corneth_, Feb 24 2024
%t Table[DivisorSum[n, #^2 &, # <= Sqrt[n] && OddQ[#] &], {n, 1, 80}]
%t nmax = 80; CoefficientList[Series[Sum[(2 k - 1)^2 x^((2 k - 1)^2)/(1 - x^(2 k - 1)), {k, 1, nmax}], {x, 0, nmax}], x] // Rest
%o (PARI) a(n) = sum(k=0, sqrtint(n), if ((k%2) && !(n%k), k^2)); \\ _Michel Marcus_, Aug 22 2021
%o (PARI)
%o a(n) = {
%o my(s = sqrtint(n), res);
%o n>>=valuation(n, 2);
%o d = divisors(n);
%o for(i = 1, #d,
%o if(d[i] <= s,
%o res += d[i]^2
%o ,
%o return(res)
%o )
%o ); res
%o } \\ _David A. Corneth_, Feb 24 2024
%Y Cf. A001157, A050999, A069288, A069289, A095118, A347161, A347174, A347175.
%K nonn,easy
%O 1,9
%A _Ilya Gutkovskiy_, Aug 21 2021