login
A347167
Numbers k such that phi(binomial(k,2)) is a power of 2.
0
2, 3, 4, 5, 6, 16, 17, 256, 257, 65536, 65537, 4294967296
OFFSET
1,1
COMMENTS
Every Fermat prime appears in this sequence.
A number greater than 2^32 is in this sequence if and only if it is a Fermat prime.
REFERENCES
M. Krizek, F. Luca and L. Somer, 17 Lectures on Fermat Numbers: From Number Theory to Geometry, CMS Books in Mathematics, vol. 9, Springer-Verlag, New York, 2001, p. 86.
F. Luca, Pascal's triangle and constructible polygons, Util. Math. 58 (2000d), pp. 209-214.
FORMULA
For n >= 13, a(n) = A019434(n-7) (if it exists).
MATHEMATICA
Select[Range[10^5], IntegerQ@Log2[EulerPhi@Binomial[#, 2]]&] (* Giorgos Kalogeropoulos, Sep 08 2021 *)
PROG
(Magma) r:=7; IsInteger:=func<i | i eq Floor(i)>; lst:=[k: k in [2..6] | IsInteger(Log(2, EulerPhi(Binomial(k, 2))))]; t:=1; for x in [1..r] do m:=4^(2^x); if t eq 1 then Append(~lst, m); end if; if IsPrime(m+1) then Append(~lst, m+1); else t:=0; end if; end for; lst;
CROSSREFS
Sequence in context: A037341 A228730 A062932 * A166098 A124365 A115896
KEYWORD
nonn,hard,more
AUTHOR
STATUS
approved