login
A347129
a(n) = A347130(n) / A003557(n), where A347130 is the Dirichlet convolution of the identity function with the arithmetic derivative of n.
8
0, 1, 1, 3, 1, 10, 1, 6, 3, 14, 1, 24, 1, 18, 16, 10, 1, 21, 1, 36, 20, 26, 1, 44, 3, 30, 6, 48, 1, 124, 1, 15, 28, 38, 24, 45, 1, 42, 32, 68, 1, 164, 1, 72, 39, 50, 1, 70, 3, 27, 40, 84, 1, 36, 32, 92, 44, 62, 1, 276, 1, 66, 51, 21, 36, 244, 1, 108, 52, 236, 1, 78, 1, 78, 33, 120, 36, 284, 1, 110, 10, 86, 1, 372, 44
OFFSET
1,4
FORMULA
a(n) = A347130(n) / A003557(n).
PROG
(PARI)
A003415(n) = if(n<=1, 0, my(f=factor(n)); n*sum(i=1, #f~, f[i, 2]/f[i, 1]));
A003557(n) = (n/factorback(factorint(n)[, 1]));
A347130(n) = sumdiv(n, d, d*A003415(n/d));
A347129(n) = (A347130(n) / A003557(n));
CROSSREFS
Cf. also A342001, A347127, A347128.
Sequence in context: A141903 A010289 A226646 * A127613 A211360 A178866
KEYWORD
nonn
AUTHOR
Antti Karttunen, Aug 23 2021
STATUS
approved