login
A347099
a(1) = 2; and for n > 1, a(n) = A336853(n) + A347098(n).
3
2, 0, 0, 1, 0, 4, 0, 9, 4, 4, 0, 32, 0, 8, 8, 49, 0, 56, 0, 36, 16, 4, 0, 153, 4, 8, 56, 66, 0, 96, 0, 207, 8, 4, 16, 295, 0, 8, 16, 187, 0, 168, 0, 48, 120, 12, 0, 553, 16, 80, 8, 78, 0, 444, 8, 323, 16, 4, 0, 480, 0, 12, 216, 745, 16, 144, 0, 60, 24, 200, 0, 1016, 0, 8, 152, 90, 16, 216, 0, 723, 472, 4, 0, 786, 8, 8, 8, 289
OFFSET
1,1
COMMENTS
Sum of {the pointwise sum of A336853 and A063524 (1, 0, 0, 0, ...)} and its Dirichlet inverse.
The first negative term is a(720) = -6306.
FORMULA
a(1) = 2, and for n > 1, a(n) = -Sum_{d|n, 1<d<n} A336853(d) * A347098(n/d).
For all n >= 1, a(A001248(n)) = A001223(n)^2.
PROG
(PARI)
up_to = 16384;
A336853(n) = { my(f = factor(n)); for(i=1, #f~, f[i, 1] = nextprime(f[i, 1]+1)); (factorback(f)-n); };
Aux347098(n) = if(1==n, n, A336853(n));
DirInverseCorrect(v) = { my(u=vector(#v)); u[1] = (1/v[1]); for(n=2, #v, u[n] = (-u[1]*sumdiv(n, d, if(d<n, v[n/d]*u[d], 0)))); (u) }; \\ Compute the Dirichlet inverse of the sequence given in input vector v.
v347098 = DirInverseCorrect(vector(up_to, n, Aux347098(n)));
A347098(n) = v347098[n];
A347099(n) = if(1==n, 2, A336853(n)+A347098(n));
CROSSREFS
KEYWORD
sign
AUTHOR
Antti Karttunen, Aug 19 2021
STATUS
approved