login
A347002
Expansion of e.g.f. exp( -log(1 - x)^3 / 3! ).
10
1, 0, 0, 1, 6, 35, 235, 1834, 16352, 163764, 1818030, 22143726, 293476326, 4203311892, 64682865156, 1064154324024, 18636296872320, 346103784493560, 6793394350116600, 140508244952179200, 3054120126193160280, 69596730438090806880, 1659041650323705102840
OFFSET
0,5
LINKS
FORMULA
a(0) = 1; a(n) = Sum_{k=1..n} binomial(n-1,k-1) * |Stirling1(k,3)| * a(n-k).
a(n) = Sum_{k=0..floor(n/3)} (3*k)! * |Stirling1(n,3*k)|/(6^k * k!). - Seiichi Manyama, May 06 2022
MATHEMATICA
nmax = 22; CoefficientList[Series[Exp[-Log[1 - x]^3/3!], {x, 0, nmax}], x] Range[0, nmax]!
a[0] = 1; a[n_] := a[n] = Sum[Binomial[n - 1, k - 1] Abs[StirlingS1[k, 3]] a[n - k], {k, 1, n}]; Table[a[n], {n, 0, 22}]
PROG
(PARI) a(n) = sum(k=0, n\3, (3*k)!*abs(stirling(n, 3*k, 1))/(6^k*k!)); \\ Seiichi Manyama, May 06 2022
CROSSREFS
KEYWORD
nonn
AUTHOR
Ilya Gutkovskiy, Aug 10 2021
STATUS
approved