login
A346973
a(n) = a(n-1) mod a(n-8) + a(n-2) mod a(n-7) + a(n-3) mod a(n-6) + a(n-4) mod a(n-5) where first 8 terms are 1, 2, 3, 4, 5, 6, 7, 8.
1
1, 2, 3, 4, 5, 6, 7, 8, 2, 6, 6, 6, 9, 15, 2, 6, 8, 10, 14, 11, 18, 8, 7, 20, 26, 27, 26, 21, 17, 8, 65, 51, 61, 42, 36, 79, 67, 95, 100, 115, 160, 90, 73, 176, 250, 299, 208, 332, 121, 152, 417, 462, 603, 167, 650, 556, 422, 612, 1322, 1051, 1635, 933, 1111
OFFSET
1,2
COMMENTS
Is this sequence finite? When is the first appearance of 0? If some a(n) equals 0 then the sequence will stop.
FORMULA
Conjecture: a(n)^(1/n) tends to c, where 1.11675 < c < 1.11690. - Nicolas Bělohoubek and Vaclav Kotesovec, Aug 18 2021
MATHEMATICA
RecurrenceTable[{a[n] == Mod[a[n-1], a[n-8]] + Mod[a[n-2], a[n-7]] + Mod[a[n-3], a[n-6]] + Mod[a[n-4], a[n-5]], a[1]==1, a[2]==2, a[3]==3, a[4]==4, a[5]==5, a[6]==6, a[7]==7, a[8]==8}, a, {n, 1, 50}] (* Vaclav Kotesovec, Aug 18 2021 *)
nxt[{a_, b_, c_, d_, e_, f_, g_, h_}]:={b, c, d, e, f, g, h, Mod[h, a]+Mod[g, b]+Mod[f, c]+ Mod[ e, d]}; NestList[nxt, Range[8], 70][[All, 1]] (* Harvey P. Dale, Oct 19 2022 *)
CROSSREFS
Sequence in context: A173528 A245345 A043268 * A238593 A279649 A278060
KEYWORD
nonn,easy
AUTHOR
Nicolas Bělohoubek, Aug 18 2021
EXTENSIONS
Grammatical changes to comments provided by Harvey P. Dale, Oct 19 2022
STATUS
approved