login
A346956
Numbers k such that A000203(k) and A007955(k) are both divisible by A187680(k).
2
4, 9, 14, 16, 25, 38, 42, 49, 51, 55, 62, 64, 70, 81, 86, 92, 96, 117, 121, 130, 134, 138, 140, 158, 159, 161, 168, 169, 182, 206, 209, 234, 254, 256, 266, 267, 278, 282, 284, 289, 302, 322, 326, 351, 361, 376, 390, 398, 408, 410, 422, 426, 434, 446, 477, 508, 529, 532, 534, 542, 551, 566, 590
OFFSET
1,1
COMMENTS
Numbers k such that both the sum s and product p of the divisors of k are divisible by (p mod s).
LINKS
EXAMPLE
a(3) = 14 is a term because A000203(14) = 1+2+7+14 = 24, A007955(14) = 1*2*7*14 = 196, A187680(14) = 196 mod 24 = 4, and both 24 and 196 are divisible by 4.
MAPLE
filter:= proc(n) local d, s, p, r;
d:= numtheory:-divisors(n);
s:= convert(d, `+`);
p:= convert(d, `*`);
r:= p mod s;
r <> 0 and p mod r = 0 and s mod r = 0
end proc:
select(filter, [$1..1000]);
MATHEMATICA
okQ[n_] := Module[{d, s, p, m},
d = Divisors[n];
s = Total[d];
p = Times @@ d;
m = Mod[p, s];
If[m == 0, False, Divisible[s, m] && Divisible[p, m]]];
Select[Range[1000], okQ] (* Jean-François Alcover, May 16 2023 *)
PROG
(PARI) isok(k) = my(d=divisors(k), s=vecsum(d), p=vecprod(d), m=p % s); (m>0) && !(s%m) && !(p%m); \\ Michel Marcus, Aug 09 2021
CROSSREFS
Includes A188061.
Sequence in context: A312992 A312993 A312994 * A312995 A312996 A312997
KEYWORD
nonn
AUTHOR
J. M. Bergot and Robert Israel, Aug 08 2021
STATUS
approved