

A346940


Numbers whose square starts with exactly 4 identical digits.


2



2357, 2582, 3334, 4714, 5774, 6667, 8165, 8819, 9428, 10542, 10543, 10544, 10545, 14907, 14908, 14909, 18257, 18258, 18259, 21081, 21082, 21083, 23570, 23571, 25819, 25820, 27888, 27889, 29813, 29814, 31622, 33332, 33333, 33335, 33336, 33337, 33338, 33339, 33340, 33341, 33342
(list;
graph;
refs;
listen;
history;
text;
internal format)



OFFSET

1,1


COMMENTS

If m is a term, 10*m is another term.
Differs from A132391 where only at least 4 identical digits are required; indeed, 10541 is the first term of A132391 that is not in this sequence (see Example section), the next one is 33346.


LINKS

Table of n, a(n) for n=1..41.


EXAMPLE

2357 is a term because 2357^2 = 5555449 starts with four 5's.
10541 is not a term because 10541^2 = 111112681 starts with five 1's.


MATHEMATICA

q[n_] := SameQ @@ (d = IntegerDigits[n^2])[[1 ;; 4]] && d[[5]] != d[[1]]; Select[Range[100, 33350], q] (* Amiram Eldar, Aug 08 2021 *)


PROG

(Python)
def ok(n):
s = str(n*n)
return len(s) > 4 and s[0] == s[1] == s[2] == s[3] != s[4]
print(list(filter(ok, range(33343)))) # Michael S. Branicky, Aug 08 2021


CROSSREFS

Cf. A346941, A346942.
Supersequences: A131573, A132391.
Similar with: A346812 (2 digits), A346891 (3 digits).
Sequence in context: A220626 A136420 A132391 * A134966 A108419 A073037
Adjacent sequences: A346937 A346938 A346939 * A346941 A346942 A346943


KEYWORD

nonn,base


AUTHOR

Bernard Schott, Aug 08 2021


STATUS

approved



