OFFSET
1,2
FORMULA
a(n) = n! * Sum_{k=1..n} (-1)^(k+1) * binomial(n-k+2,2) / k.
a(n) ~ log(2) * n^2 * n! / 2. - Vaclav Kotesovec, Aug 06 2021
MATHEMATICA
nmax = 21; CoefficientList[Series[Log[1 + x]/(1 - x)^3, {x, 0, nmax}], x] Range[0, nmax]! // Rest
Table[n! Sum[(-1)^(k + 1) Binomial[n - k + 2, 2]/k , {k, 1, n}], {n, 1, 21}]
Table[n!*(((-1)^n*(2*n + 5) - 4*n - 5)/8 + (n+1)*(n+2)*(Log[2] - (-1)^n * LerchPhi[-1, 1, 1 + n])/2), {n, 1, 21}] // Simplify (* Vaclav Kotesovec, Aug 06 2021 *)
PROG
(PARI) my(x='x+O('x^25)); Vec(serlaplace(log(1+x)/(1-x)^3)) \\ Michel Marcus, Aug 06 2021
CROSSREFS
KEYWORD
nonn
AUTHOR
Ilya Gutkovskiy, Aug 05 2021
STATUS
approved