OFFSET
0,2
COMMENTS
Let b(n) = 2*Pi*Integral_{-oo<=x<=oo} log(1/2 + i*x)^n / (exp(-Pi*x) + exp(Pi*x))^2, then B(s) = Sum_{n>=0} b(n)*s^n/n! = -s*zeta(1 - s) is the Bernoulli function.
REFERENCES
F. Johansson and I. V. Blagouchine, Computing Stieltjes constants using complex integration, Mathematics of Computation, 88:318, 1829-1850, (2019).
LINKS
Peter H. N. Luschny, An introduction to the Bernoulli function, arXiv:2009.06743 [math.HO], 2020.
F. Johansson and I. V. Blagouchine, Computing Stieltjes constants using complex integration, arXiv:1804.01679 [math.CA], 2018.
Peter Luschny, Illustrating A346832, A346833, A346834, A346835.
EXAMPLE
0.1456316909673534497211727517498026382754726766686759...
CROSSREFS
KEYWORD
nonn,cons
AUTHOR
Peter Luschny, Aug 05 2021
STATUS
approved