OFFSET
1,1
LINKS
Sean A. Irvine, Table of n, a(n) for n = 1..10000
FORMULA
a(n) = n + 64 for n >= 8 (conjectured). - Chai Wah Wu, Dec 05 2023
EXAMPLE
61 = 1^2 + 1^2 + 1^2 + 1^2 + 1^2 + 1^2 + 1^2 + 1^2 + 2^2 + 7^2
= 1^2 + 1^2 + 1^2 + 1^2 + 1^2 + 1^2 + 1^2 + 3^2 + 3^2 + 6^2
= 1^2 + 1^2 + 1^2 + 1^2 + 1^2 + 1^2 + 1^2 + 2^2 + 5^2 + 5^2
= 1^2 + 1^2 + 1^2 + 1^2 + 2^2 + 2^2 + 2^2 + 2^2 + 4^2 + 5^2
= 1^2 + 1^2 + 1^2 + 1^2 + 1^2 + 2^2 + 3^2 + 3^2 + 3^2 + 5^2
= 2^2 + 2^2 + 2^2 + 2^2 + 2^2 + 2^2 + 2^2 + 2^2 + 2^2 + 5^2
= 1^2 + 1^2 + 1^2 + 1^2 + 1^2 + 2^2 + 2^2 + 4^2 + 4^2 + 4^2
= 1^2 + 2^2 + 2^2 + 2^2 + 2^2 + 2^2 + 2^2 + 2^2 + 4^2 + 4^2
= 1^2 + 1^2 + 2^2 + 2^2 + 2^2 + 2^2 + 3^2 + 3^2 + 3^2 + 4^2
= 1^2 + 1^2 + 1^2 + 2^2 + 3^2 + 3^2 + 3^2 + 3^2 + 3^2 + 3^2
so 61 is a term.
PROG
(Python)
from itertools import combinations_with_replacement as cwr
from collections import defaultdict
keep = defaultdict(lambda: 0)
power_terms = [x**2 for x in range(1, 1000)]
for pos in cwr(power_terms, 10):
tot = sum(pos)
keep[tot] += 1
rets = sorted([k for k, v in keep.items() if v >= 8])
for x in range(len(rets)):
print(rets[x])
CROSSREFS
KEYWORD
nonn
AUTHOR
David Consiglio, Jr., Aug 04 2021
STATUS
approved