login
A346718
Decimal expansion of Lim_{n>=0} Sum_{k=1..2*n} Bernoulli(1 + k) / ((1 + k) * k^(1 + k)).
2
0, 8, 3, 2, 3, 0, 7, 0, 5, 9, 2, 2, 5, 3, 9, 9, 0, 4, 1, 0, 9, 0, 8, 7, 8, 7, 7, 6, 3, 1, 8, 7, 9, 7, 8, 9, 7, 8, 2, 9, 4, 5, 6, 8, 5, 5, 8, 2, 6, 0, 9, 0, 2, 6, 5, 1, 7, 1, 8, 1, 9, 4, 4, 8, 8, 1, 0, 4, 3, 0, 4, 5, 7, 5, 8, 7, 1, 7, 5, 2, 8, 5, 9, 0, 7, 2, 3, 0, 0, 0, 0
OFFSET
0,2
EXAMPLE
0.0832307059225399041090878776318797897829456855826090...
MAPLE
evalf(Sum(bernoulli(k+1) / ((k+1) * k^(k+1)), k = 1..infinity), 120); # Vaclav Kotesovec, Aug 11 2021
MATHEMATICA
a[n_] := Sum[BernoulliB[1 + k] / ((1 + k) * k^(1 + k)), {k, 1, n}];
{0, RealDigits[N[a[240], 140], 10, 90][[1]]} // Flatten
CROSSREFS
Cf. A346716 (numerator), A346717 (denominator).
Sequence in context: A198344 A226042 A198843 * A119277 A273556 A346713
KEYWORD
nonn,cons
AUTHOR
Peter Luschny, Aug 11 2021
STATUS
approved