login
A346338
Numbers that are the sum of nine fifth powers in exactly three ways.
7
52418, 52449, 52660, 53441, 54519, 54550, 54761, 55690, 57643, 60193, 62294, 69224, 69635, 69666, 69877, 70658, 70955, 70986, 71197, 71325, 71978, 72759, 73001, 74079, 76031, 77410, 78730, 84162, 84459, 84490, 84521, 84701, 84732, 84943, 85185, 85482, 85513
OFFSET
1,1
COMMENTS
Differs from A345620 at term 8 because 55542 = 3^5 + 3^5 + 3^5 + 3^5 + 5^5 + 5^5 + 6^5 + 6^5 + 8^5 = 1^5 + 4^5 + 4^5 + 4^5 + 4^5 + 5^5 + 6^5 + 6^5 + 8^5 = 3^5 + 3^5 + 3^5 + 3^5 + 4^5 + 5^5 + 7^5 + 7^5 + 7^5 = 1^5 + 4^5 + 4^5 + 4^5 + 4^5 + 4^5 + 7^5 + 7^5 + 7^5.
LINKS
EXAMPLE
52418 is a term because 52418 = 1^5 + 3^5 + 3^5 + 3^5 + 3^5 + 5^5 + 6^5 + 6^5 + 8^5 = 1^5 + 1^5 + 4^5 + 4^5 + 4^5 + 4^5 + 6^5 + 6^5 + 8^5 = 1^5 + 3^5 + 3^5 + 3^5 + 3^5 + 4^5 + 7^5 + 7^5 + 7^5.
PROG
(Python)
from itertools import combinations_with_replacement as cwr
from collections import defaultdict
keep = defaultdict(lambda: 0)
power_terms = [x**5 for x in range(1, 1000)]
for pos in cwr(power_terms, 9):
tot = sum(pos)
keep[tot] += 1
rets = sorted([k for k, v in keep.items() if v == 3])
for x in range(len(rets)):
print(rets[x])
CROSSREFS
KEYWORD
nonn
AUTHOR
STATUS
approved