login
A346308
Intersection of Beatty sequences for sqrt(2) and sqrt(3).
17
1, 5, 8, 12, 15, 19, 22, 24, 25, 29, 31, 32, 36, 38, 39, 41, 43, 45, 46, 48, 50, 53, 55, 57, 60, 62, 65, 67, 69, 72, 74, 76, 77, 79, 83, 84, 86, 90, 91, 93, 96, 98, 100, 103, 107, 110, 114, 117, 121, 124, 128, 131, 135, 138, 140, 142, 145, 147, 148, 152, 154
OFFSET
1,2
COMMENTS
Let d(n) = a(n) - A022840(n). Conjecture: (d(n)) is unbounded below and above, and d(n) = 0 for infinitely many n.
From Clark Kimberling, Jul 26 2022: (Start)
This is the first of four sequences that partition the positive integers. Starting with a general overview, suppose that u = (u(n)) and v = (v(n)) are increasing sequences of positive integers. Let u' and v' be their complements, and assume that the following four sequences are infinite:
(1) u ^ v = intersection of u and v (in increasing order);
(2) u ^ v';
(3) u' ^ v;
(4) u' ^ v'.
Every positive integer is in exactly one of the four sequences. For A346308, u, v, u', v', are the Beatty sequences given by u(n) = floor(n*sqrt(2)) and v(n) = floor(n*sqrt(3)), so that r = sqrt(2), s = sqrt(3), r' = 2 + sqrt(2), s' = (3 + sqrt(3))/2. (See A356052.)
(End)
FORMULA
In general, if r and s are irrational numbers greater than 1, and a(n) is the n-th term of the intersection (assumed nonempty) of the Beatty sequences for r and s, then a(n) = floor(r*ceiling(a(n)/r)) = floor(s*ceiling(a(n)/s)).
EXAMPLE
Beatty sequence for sqrt(2): (1,2,4,5,7,8,9,11,12,14,...).
Beatty sequence for sqrt(3): (1,3,5,6,8,10,12,13,15,...).
a(n) = (1,5,8,12,...).
In the notation in Comments:
(1) u ^ v = (1, 5, 8, 12, 15, 19, 22, 24, 25, 29, 31, 32, ...) = A346308.
(2) u ^ v' = (2, 4, 7, 9, 11, 14, 16, 18, 21, 26, 28, 33, 35, ...) = A356085.
(3) u' ^ v = (3, 6, 10, 13, 17, 20, 27, 34, 51, 58, 64, 71, 81, ...) = A356086.
(4) u' ^ v' = (23, 30, 37, 40, 44, 47, 54, 61, 68, 75, 78, 85, ...) = A356087.
MATHEMATICA
z = 200;
r = Sqrt[2]; u = Table[Floor[n*r], {n, 1, z}] (* A001951 *)
u1 = Take[Complement[Range[1000], u], z] (* A001952 *)
r1 = Sqrt[3]; v = Table[Floor[n*r1], {n, 1, z}] (* A022838 *)
v1 = Take[Complement[Range[1000], v], z] (* A054406 *)
t1 = Intersection[u, v] (* A346308 *)
t2 = Intersection[u, v1] (* A356085 *)
t3 = Intersection[u1, v] (* A356086 *)
t4 = Intersection[u1, v1] (* A356087 *)
PROG
(Python)
from math import isqrt
from itertools import count, islice
def A346308_gen(): # generator of terms
return filter(lambda n:n == isqrt(3*(isqrt(n**2//3)+1)**2), (isqrt(n*n<<1) for n in count(1)))
A346308_list = list(islice(A346308_gen(), 30)) # Chai Wah Wu, Aug 06 2022
CROSSREFS
Intersection of A001951 and A022838.
Cf. A001952, A022838, A054406, A356085, A356086, A356087, A356088 (composites instead of intersections).
Sequence in context: A212452 A184915 A108173 * A214858 A186276 A047383
KEYWORD
nonn
AUTHOR
Clark Kimberling, Sep 11 2021
STATUS
approved