OFFSET
1,1
COMMENTS
Differs from A345643 at term 7 because 281935070 = 17^5 + 17^5 + 18^5 + 21^5 + 23^5 + 26^5 + 48^5 = 7^5 + 17^5 + 20^5 + 23^5 + 24^5 + 32^5 + 47^5 = 7^5 + 13^5 + 13^5 + 26^5 + 30^5 + 36^5 + 45^5 = 1^5 + 13^5 + 21^5 + 21^5 + 33^5 + 37^5 + 44^5 = 6^5 + 7^5 + 13^5 + 31^5 + 34^5 + 36^5 + 43^5 = 4^5 + 8^5 + 16^5 + 29^5 + 31^5 + 41^5 + 41^5 = 6^5 + 8^5 + 12^5 + 28^5 + 37^5 + 38^5 + 41^5 = 3^5 + 6^5 + 15^5 + 32^5 + 35^5 + 38^5 + 41^5 = 7^5 + 24^5 + 25^5 + 32^5 + 34^5 + 37^5 + 41^5 = 13^5 + 20^5 + 21^5 + 34^5 + 35^5 + 36^5 + 41^5 = 8^5 + 24^5 + 26^5 + 31^5 + 31^5 + 40^5 + 40^5.
LINKS
Sean A. Irvine, Table of n, a(n) for n = 1..4377
EXAMPLE
134581976 is a term because 134581976 = 1^5 + 14^5 + 17^5 + 18^5 + 26^5 + 31^5 + 39^5 = 1^5 + 1^5 + 10^5 + 12^5 + 19^5 + 35^5 + 38^5 = 8^5 + 11^5 + 12^5 + 17^5 + 27^5 + 33^5 + 38^5 = 3^5 + 12^5 + 12^5 + 21^5 + 28^5 + 32^5 + 38^5 = 4^5 + 11^5 + 13^5 + 22^5 + 24^5 + 36^5 + 36^5 = 5^5 + 6^5 + 19^5 + 20^5 + 24^5 + 36^5 + 36^5 = 1^5 + 4^5 + 21^5 + 21^5 + 29^5 + 34^5 + 36^5 = 1^5 + 8^5 + 14^5 + 23^5 + 32^5 + 32^5 + 36^5 = 6^5 + 25^5 + 25^5 + 25^5 + 29^5 + 30^5 + 36^5 = 12^5 + 20^5 + 21^5 + 26^5 + 28^5 + 34^5 + 35^5.
PROG
(Python)
from itertools import combinations_with_replacement as cwr
from collections import defaultdict
keep = defaultdict(lambda: 0)
power_terms = [x**5 for x in range(1, 1000)]
for pos in cwr(power_terms, 7):
tot = sum(pos)
keep[tot] += 1
rets = sorted([k for k, v in keep.items() if v == 10])
for x in range(len(rets)):
print(rets[x])
CROSSREFS
KEYWORD
nonn
AUTHOR
David Consiglio, Jr., Jul 12 2021
STATUS
approved