login
A346257
Numbers that are the sum of five fifth powers in exactly five ways.
5
9006349824, 65799210368, 67629776576, 181085909632, 188189635424, 295677350451, 467139768468, 471359089024, 656243139157, 691381929281, 797466940832, 854533526901, 874953049024, 891862586132, 953769598750, 1038549256768, 1092458681568, 1182658308657
OFFSET
1,1
COMMENTS
Differs from 103 terms known at term 6 because 288203194368 = 48^5 + 84^5 + 96^5 + 108^5 + 192^5 = 16^5 + 99^5 + 103^5 + 121^5 + 189^5 = 42^5 + 68^5 + 86^5 + 148^5 + 184^5 = 16^5 + 68^5 + 124^5 + 136^5 + 184^5 = 16^5 + 82^5 + 94^5 + 158^5 + 178^5 = 24^5 + 36^5 + 144^5 + 156^5 + 168^5.
LINKS
EXAMPLE
9006349824 is a term because 9006349824 = 24^5 + 42^5 + 48^5 + 54^5 + 96^5 = 21^5 + 34^5 + 43^5 + 74^5 + 92^5 = 8^5 + 34^5 + 62^5 + 68^5 + 92^5 = 8^5 + 41^5 + 47^5 + 79^5 + 89^5 = 12^5 + 18^5 + 72^5 + 78^5 + 84^5.
PROG
(Python)
from itertools import combinations_with_replacement as cwr
from collections import defaultdict
keep = defaultdict(lambda: 0)
power_terms = [x**5 for x in range(1, 1000)]
for pos in cwr(power_terms, 5):
tot = sum(pos)
keep[tot] += 1
rets = sorted([k for k, v in keep.items() if v == 5])
for x in range(len(rets)):
print(rets[x])
CROSSREFS
KEYWORD
nonn
AUTHOR
STATUS
approved