login
a(n) = A276085(A108951(A346096(n))), where A346096(n) gives the numerator of the primorial deflation of A276086(A108951(n)).
7

%I #8 Jul 08 2021 14:22:53

%S 1,3,9,6,39,18,249,9,39,78,2559,36,32589,498,234,18,543099,78,

%T 10242789,156,1494,5118,233335659,57,996,65178,258,996,6703028889,405,

%U 207263519019,42,15354,1086198,6612,156,7628001653829,20485578,195534,249,311878265181039,2559,13394639596851069,10236,1245,466671318,628284422185342479

%N a(n) = A276085(A108951(A346096(n))), where A346096(n) gives the numerator of the primorial deflation of A276086(A108951(n)).

%H <a href="/index/Pri#prime_indices">Index entries for sequences computed from indices in prime factorization</a>

%H <a href="/index/Pri#primorialbase">Index entries for sequences related to primorial base</a>

%H <a href="/index/Pri#primorial_numbers">Index entries for sequences related to primorial numbers</a>

%F a(n) = A346105(A346096(n)) = A276085(A346106(n)) = A276085(A108951(A346096(n))).

%F a(n) = A108951(n) + A346109(n).

%o (PARI)

%o A064989(n) = {my(f); f = factor(n); if((n>1 && f[1,1]==2), f[1,2] = 0); for (i=1, #f~, f[i,1] = precprime(f[i,1]-1)); factorback(f)};

%o A319626(n) = (n / gcd(n, A064989(n)));

%o A346096(n) = A319626(A324886(n));

%o A346106(n) = A108951(A346096(n));

%o A002110(n) = prod(i=1,n,prime(i));

%o A276085(n) = { my(f = factor(n)); sum(k=1, #f~, f[k, 2]*A002110(primepi(f[k, 1])-1)); };

%o A346108(n) = A276085(A346106(n)); \\ Rest of program given in A324886.

%Y Cf. A002110, A064989, A108951, A276085, A276086, A324886, A319626, A346096, A346105, A346106, A346109.

%K nonn

%O 1,2

%A _Antti Karttunen_, Jul 08 2021