login
A346074
a(n) = 1 + Sum_{k=0..n-5} a(k) * a(n-k-5).
4
1, 1, 1, 1, 1, 2, 3, 4, 5, 6, 9, 14, 21, 30, 41, 59, 89, 136, 205, 301, 443, 664, 1011, 1545, 2341, 3530, 5341, 8143, 12487, 19148, 29299, 44817, 68721, 105742, 163025, 251392, 387595, 597988, 924047, 1430167, 2215595, 3433788, 5323915, 8260652, 12829849
OFFSET
0,6
LINKS
FORMULA
G.f. A(x) satisfies: A(x) = 1 / (1 - x) + x^5 * A(x)^2.
Conjecture D-finite with recurrence (n+5)*a(n) +2*(-n-4)*a(n-1) +(n+3)*a(n-2) +2*(-2*n+5)*a(n-5) +4*(n-3)*a(n-6)=0. - R. J. Mathar, Feb 17 2022
a(n) = Sum_{k=0..floor(n/5)} binomial(n-4*k,k) * Catalan(k). - Seiichi Manyama, Jan 22 2023
MATHEMATICA
a[n_] := a[n] = 1 + Sum[a[k] a[n - k - 5], {k, 0, n - 5}]; Table[a[n], {n, 0, 44}]
nmax = 44; A[_] = 0; Do[A[x_] = 1/(1 - x) + x^5 A[x]^2 + O[x]^(nmax + 1) // Normal, nmax + 1]; CoefficientList[A[x], x]
PROG
(PARI) a(n) = sum(k=0, n\5, binomial(n-4*k, k)*binomial(2*k, k)/(k+1)); \\ Seiichi Manyama, Jan 22 2023
CROSSREFS
KEYWORD
nonn
AUTHOR
Ilya Gutkovskiy, Jul 04 2021
STATUS
approved