login
A346042
Decimal expansion of Sum_{k>=0} 2^floor(k/2)/(k!^2).
0
2, 5, 6, 2, 7, 9, 3, 5, 3, 4, 7, 8, 3, 1, 8, 9, 4, 6, 1, 6, 0, 7, 6, 8, 1, 6, 4, 5, 1, 3, 8, 5, 7, 1, 3, 3, 5, 1, 5, 0, 8, 4, 9, 0, 6, 7, 8, 9, 2, 0, 6, 6, 1, 1, 9, 2, 2, 7, 8, 9, 6, 7, 9, 2, 8, 8, 8, 6, 8, 5, 3, 8, 7, 0, 8, 5, 7, 6, 4, 5, 8, 4, 9, 7, 2, 5, 5, 4, 1, 2, 4, 2, 5, 3, 1, 7, 5, 9, 5, 9
OFFSET
1,1
COMMENTS
This constant is irrational (Mingarelli, 2013).
LINKS
Angelo B. Mingarelli, Abstract factorials, Notes on Number Theory and Discrete Mathematics, Vol. 19, No. 4 (2013), pp. 43-76 (see p. 62); arXiv preprint, arXiv:0705.4299 [math.NT], 2007-2012.
Eric Weisstein's World of Mathematics, Bessel Function of the First Kind.
Eric Weisstein's World of Mathematics, Modified Bessel Function of the First Kind.
FORMULA
Equals (1/4)*(2+sqrt(2)) * BesselI(0,2^(5/4)) + (1/4)*(2-sqrt(2)) * BesselJ(0, 2^(5/4)), where BesselJ is the Bessel function of the first kind, and BesselI is the modified Bessel function of the first kind.
EXAMPLE
2.56279353478318946160768164513857133515084906789206...
MAPLE
evalf(sum(2^floor(k/2)/k!^2, k=0..infinity), 140); # Alois P. Heinz, Jul 03 2021
MATHEMATICA
RealDigits[(1/4) * (2+Sqrt[2]) * BesselI[0, 2^(5/4)] + (1/4) * (2-Sqrt[2]) * BesselJ[0, 2^(5/4)], 10, 100][[1]]
PROG
(PARI) suminf(k=0, 2^floor(k/2)/(k!^2)) \\ Michel Marcus, Jul 02 2021
CROSSREFS
Sequence in context: A103130 A159987 A143678 * A021800 A140862 A305210
KEYWORD
nonn,cons
AUTHOR
Amiram Eldar, Jul 02 2021
STATUS
approved