login
A345941
a(n) = gcd(n, A329044(n)).
6
1, 2, 3, 4, 5, 3, 7, 2, 3, 5, 11, 3, 13, 7, 5, 4, 17, 9, 19, 5, 7, 11, 23, 3, 25, 13, 3, 7, 29, 5, 31, 2, 11, 17, 7, 9, 37, 19, 13, 5, 41, 7, 43, 11, 5, 23, 47, 3, 7, 25, 17, 13, 53, 9, 11, 7, 19, 29, 59, 5, 61, 31, 7, 4, 13, 11, 67, 17, 23, 7, 71, 9, 73, 37, 25, 19, 11, 13, 79, 5, 3, 41, 83, 7, 17, 43, 29, 11, 89
OFFSET
1,2
COMMENTS
Only powers of primes (A000961) occur as terms. A346087 gives the exponents. - Antti Karttunen, Jul 07 2021
FORMULA
a(n) = gcd(n, A329044(n)).
a(n) = n / A345942(n).
a(n) = A329044(n) / A345943(n).
a(p) = p for all primes p.
From Antti Karttunen, Jul 07 2021: (Start)
a(n) = A006530(n)^A346087(n) = A006530(n)^min(A071178(n), A329348(n)).
a(n) = gcd(n, A346097(n)).
A006530(a(n)) = A020639(A329044(n)) = A006530(n).
(End)
PROG
(PARI) A345941(n) = gcd(n, A329044(n)); \\ Rest of program given in A329044.
KEYWORD
nonn
AUTHOR
Antti Karttunen, Jul 03 2021
STATUS
approved