login
A345875
Numbers whose fourth powers are zeroless pandigital.
1
608, 809, 897, 924, 1166, 1241, 1458, 1459, 1506, 1547, 1718, 1729, 1832, 1932, 1977, 1982, 2112, 2162, 2179, 2188, 2211, 2279, 2283, 2291, 2296, 2336, 2337, 2408, 2427, 2541, 2592, 2594, 2613, 2634, 2684, 2689, 2704, 2764, 2776, 2779, 2854, 2941, 2984, 2988, 3009
OFFSET
1,1
COMMENTS
Zeroless pandigital means that it contains all the digits 1 through 9, but doesn't contain a zero.
LINKS
EXAMPLE
608^4 = 136651472896. Thus, 608 belongs to this sequence.
MAPLE
q:= n-> is({convert(n^4, base, 10)[]}={$1..9}):
select(q, [$1..3000])[]; # Alois P. Heinz, Jun 29 2021
MATHEMATICA
Select[Range[8000], Union[IntegerDigits[#^4]] == {1, 2, 3, 4, 5, 6, 7, 8, 9} &]
PROG
(Python)
def ok(n): return set(str(n**4)) == set("123456789")
print(list(filter(ok, range(3000)))) # Michael S. Branicky, Jun 27 2021
(PARI) isok(k) = my(d=digits(k^4)); vecmin(d) && (#Set(d) == 9); \\ Michel Marcus, Jun 30 2021
CROSSREFS
Cf. A071519 (for squares), A124628 (for cubes).
Subsequence of A121321 (4th power is pandigital).
Sequence in context: A131215 A096525 A142554 * A252436 A179247 A172344
KEYWORD
nonn,base
AUTHOR
Tanya Khovanova, Jun 27 2021
STATUS
approved