login
A345729
Expansion of Product_{k>=1} (1 + x^k + x^(k+2)).
1
1, 1, 1, 3, 3, 6, 7, 11, 15, 20, 28, 36, 50, 62, 86, 105, 141, 175, 226, 283, 358, 446, 557, 691, 852, 1055, 1286, 1587, 1918, 2353, 2830, 3445, 4134, 4993, 5977, 7174, 8555, 10220, 12138, 14436, 17092, 20232, 23896, 28158, 33172, 38937, 45736, 53512, 62662
OFFSET
0,4
LINKS
FORMULA
a(n) ~ c * exp(r*sqrt(n)) / n^(3/4), where r = 2*sqrt(-polylog(2,-2)) and c = (-polylog(2,-2))^(1/4) / (6*sqrt(3*Pi)).
MATHEMATICA
nmax = 60; CoefficientList[Series[Product[1 + x^k + x^(k+2), {k, 1, nmax}], {x, 0, nmax}], x]
CROSSREFS
Cf. A160571.
Sequence in context: A332557 A083751 A034401 * A350171 A240449 A088571
KEYWORD
nonn
AUTHOR
Vaclav Kotesovec, Jun 25 2021
STATUS
approved