login
Irregular triangle T(n,k) read by rows of the number of elements of order k in the dicyclic group Dic(n) for n>=2.
2

%I #11 Jun 24 2021 19:33:49

%S 1,1,0,6,1,1,2,6,0,2,1,1,0,10,0,0,0,4,1,1,0,10,4,0,0,0,0,4,1,1,2,14,0,

%T 2,0,0,0,0,0,4,1,1,0,14,0,0,6,0,0,0,0,0,0,6,1,1,0,18,0,0,0,4,0,0,0,0,

%U 0,0,0,8,1,1,2,18,0,2,0,0,6,0,0,0,0,0,0

%N Irregular triangle T(n,k) read by rows of the number of elements of order k in the dicyclic group Dic(n) for n>=2.

%C Dic(1) is omitted since it is degenerate.

%C Row n has 2*n entries (k=1..2*n).

%H Sean A. Irvine, <a href="/A345628/b345628.txt">Rows n=2..100 flattened</a>

%H Sean A. Irvine, <a href="https://github.com/archmageirvine/joeis/blob/master/src/irvine/oeis/a345/A345628.java">Java program</a> (github)

%H Wikipedia, <a href="https://en.wikipedia.org/wiki/Dicyclic_group">Dicyclic group</a>

%e Triangle begins:

%e 1, 1, 0, 6;

%e 1, 1, 2, 6, 0, 2;

%e 1, 1, 0, 1, 0, 0, 0, 4;

%e 1, 1, 0, 10, 4, 0, 0, 0, 0, 4;

%e ...

%Y Cf. A054522, A057731.

%K nonn,tabf

%O 2,4

%A _Sean A. Irvine_, Jun 22 2021