login
A345551
Numbers that are the sum of ten cubes in three or more ways.
7
197, 225, 232, 239, 246, 251, 253, 258, 260, 265, 267, 272, 277, 279, 281, 284, 286, 288, 291, 293, 295, 298, 300, 302, 303, 305, 307, 309, 310, 312, 314, 316, 317, 319, 321, 323, 324, 326, 328, 329, 330, 335, 336, 338, 340, 342, 343, 344, 345, 347, 349, 351
OFFSET
1,1
LINKS
EXAMPLE
225 is a term because 225 = 1^3 + 1^3 + 1^3 + 1^3 + 1^3 + 1^3 + 1^3 + 1^3 + 1^3 + 5^3 = 1^3 + 1^3 + 1^3 + 1^3 + 1^3 + 1^3 + 3^3 + 3^3 + 3^3 + 3^3 = 1^3 + 1^3 + 1^3 + 1^3 + 2^3 + 2^3 + 2^3 + 2^3 + 3^3 + 4^3 = 1^3 + 2^3 + 3^3 + 3^3 + 3^3 + 3^3 + 3^3 + 3^3 + 3^3 + 3^3.
PROG
(Python)
from itertools import combinations_with_replacement as cwr
from collections import defaultdict
keep = defaultdict(lambda: 0)
power_terms = [x**3 for x in range(1, 1000)]
for pos in cwr(power_terms, 10):
tot = sum(pos)
keep[tot] += 1
rets = sorted([k for k, v in keep.items() if v >= 3])
for x in range(len(rets)):
print(rets[x])
CROSSREFS
KEYWORD
nonn
AUTHOR
STATUS
approved