login
A345532
Numbers that are the sum of eight cubes in two or more ways.
7
132, 139, 158, 160, 167, 174, 181, 186, 193, 195, 197, 200, 212, 216, 219, 223, 230, 237, 238, 244, 249, 251, 256, 258, 263, 265, 270, 272, 275, 277, 282, 284, 286, 288, 289, 291, 293, 296, 298, 300, 301, 303, 307, 308, 310, 312, 314, 315, 317, 319, 321, 322
OFFSET
1,1
LINKS
EXAMPLE
139 is a term because 139 = 1^3 + 1^3 + 1^3 + 1^3 + 1^3 + 1^3 + 2^3 + 4^3 = 2^3 + 2^3 + 2^3 + 2^3 + 2^3 + 2^3 + 3^3 + 3^3.
PROG
(Python)
from itertools import combinations_with_replacement as cwr
from collections import defaultdict
keep = defaultdict(lambda: 0)
power_terms = [x**3 for x in range(1, 1000)]
for pos in cwr(power_terms, 8):
tot = sum(pos)
keep[tot] += 1
rets = sorted([k for k, v in keep.items() if v >= 2])
for x in range(len(rets)):
print(rets[x])
KEYWORD
nonn
AUTHOR
STATUS
approved