login
A345472
Emirps p such that both p and its reversal are sums of three consecutive primes.
1
1151, 1249, 1511, 3467, 3697, 7643, 7963, 9421, 11593, 32749, 36467, 39511, 71329, 76463, 92317, 94723, 110119, 111109, 123707, 124309, 124823, 128377, 141371, 146953, 150383, 155153, 160159, 164291, 167779, 173141, 178223, 184609, 190807, 192383, 192461, 199247, 304193, 304879, 306133, 322871
OFFSET
1,1
COMMENTS
Numbers p such that p and its digit reversal are distinct members of A034962.
LINKS
EXAMPLE
a(4) = 1511 because 1511 and its reversal 1151 are distinct primes, and 1511 = 499+503+509 and 1151 = 379+383+389 are sums of three consecutive primes.
MAPLE
digrev:= proc(n) local L, i;
L:= convert(n, base, 10);
add(L[-i]*10^(i-1), i=1..nops(L))
end proc:P:= select(isprime, [2, seq(i, i=3..nextprime(nextprime(333333)), 2)]):
P3:= convert(select(isprime, P[1..-3]+P[2..-2]+P[3..-1]), set):
B:= P3 intersect map(digrev, P3):
sort(convert(remove(t -> digrev(t)=t, B), list);
CROSSREFS
Sequence in context: A329520 A054999 A086259 * A175606 A179036 A179037
KEYWORD
nonn,base
AUTHOR
J. M. Bergot and Robert Israel, Jun 20 2021
STATUS
approved