login
A345465
a(n) = Sum_{d|n} (d!)^d.
4
1, 5, 217, 331781, 24883200001, 139314069504000221, 82606411253903523840000001, 6984964247141514123629140377600331781, 109110688415571316480344899355894085582848000000217, 395940866122425193243875570782668457763038822400000000024883200005
OFFSET
1,2
LINKS
FORMULA
G.f.: Sum_{k >= 1} (k! * x)^k/(1 - x^k).
If p is prime, a(p) = 1 + (p!)^p.
MATHEMATICA
Total/@Table[((Divisors[n])!)^Divisors[n], {n, 10}] (* Harvey P. Dale, Apr 24 2022 *)
PROG
(PARI) a(n) = sumdiv(n, d, d!^d);
(PARI) my(N=20, x='x+O('x^N)); Vec(sum(k=1, N, (k!*x)^k/(1-x^k)))
CROSSREFS
KEYWORD
nonn
AUTHOR
Seiichi Manyama, Jul 10 2021
STATUS
approved