login
A345392
a(n) is the least k > 1 such that n and k*n have the same set of decimal digits.
1
2, 11, 11, 11, 11, 11, 11, 11, 11, 11, 10, 101, 101, 87, 101, 77, 101, 101, 66, 101, 10, 101, 101, 14, 101, 9, 87, 101, 101, 101, 10, 43, 101, 101, 101, 101, 101, 101, 101, 87, 10, 101, 101, 8, 101, 99, 14, 101, 101, 101, 10, 101, 101, 101, 101, 101, 101, 101
OFFSET
0,1
LINKS
FORMULA
a(n) = A345391(n) / n for any n > 0.
a(n) = 2 for any n in A023086.
PROG
(PARI) a(n) = if (n==0, return (2)); { my (d=Set(digits(n))); forstep (m=2*n, oo, max(1, n), if (Set(digits(m))==d, return (m/n))) }
(Python)
def a(n):
k, ss = 2, set(str(n))
while set(str(k*n)) != ss: k += 1
return k
print([a(n) for n in range(58)]) # Michael S. Branicky, Jun 17 2021
CROSSREFS
Sequence in context: A338049 A256665 A086862 * A027828 A106371 A145523
KEYWORD
nonn,base
AUTHOR
Rémy Sigrist, Jun 17 2021
STATUS
approved