login
A345377
Number of terms m <= n, where m is a term in A006190.
2
1, 2, 2, 3, 3, 3, 3, 3, 3, 3, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5
OFFSET
0,2
COMMENTS
Table 1 of Andrica 2021 paper (p. 24) refers to A006190 as the "bronze Fibonacci" numbers.
LINKS
Dorin Andrica, Ovidiu Bagdasar, and George Cătălin Tųrcąs, On some new results for the generalised Lucas sequences, An. Şt. Univ. Ovidius Constanţa (Romania, 2021) Vol. 29, No. 1, 17-36. See Section 5.3, pp. 33, Table 4.
EXAMPLE
a(0)=1, since A006190(0) = 0 and A006190(1) = 1.
a(1)=a(2)=2 since 0 and 1 are the terms in A006190 that do not exceed 1 and 2, respectively.
a(k)=3 for 3 <= k <= 9 since the first terms of A006190 are {0, 1, 3, 10}.
MATHEMATICA
Block[{a = 3, b = -1, nn = 105, u, v = {}}, u = {0, 1}; Do[AppendTo[u, Total[{-b, a} u[[-2 ;; -1]]]]; AppendTo[v, Count[u, _?(# <= i &)]], {i, nn}]; {Boole[First[u] <= 0]}~Join~v] (* or *)
Accumulate@ ReplacePart[ConstantArray[0, Last[#]], Map[# -> 1 &, # + 1]] &@ Fibonacci[Range[0, 5], 3] (* Michael De Vlieger, Jun 16 2021 *)
CROSSREFS
Cf. A006190, A108852 (Fibonacci), A130245 (Lucas), A345378.
Sequence in context: A131981 A257244 A130147 * A096143 A025792 A119447
KEYWORD
nonn,easy
AUTHOR
Ovidiu Bagdasar, Jun 16 2021
STATUS
approved