login
A345335
Primes p such that A014499(k) / A000120(k) is an integer, where k = A000720(p).
0
2, 3, 5, 7, 19, 23, 29, 41, 53, 67, 71, 73, 83, 89, 97, 113, 131, 139, 193, 197, 211, 269, 281, 283, 311, 317, 337, 347, 349, 353, 359, 373, 389, 479, 503, 521, 523, 547, 563, 587, 593, 601, 647, 661, 691, 719, 739, 839, 857, 863, 881, 887, 929, 937, 983, 1013
OFFSET
1,1
COMMENTS
A014499(k) / A000120(k) = 1 gives A072439.
EXAMPLE
prime(8) = 19, A014499(8)/A000120(8) = 3, thus 19 is a term.
MATHEMATICA
Select[Range[1000], PrimeQ[#] && Divisible @@ DigitCount[{#, PrimePi[#]}, 2, 1] &] (* Amiram Eldar, Jun 14 2021 *)
PROG
(PARI) isok(p) = isprime(p) && ((hammingweight(p) % hammingweight(primepi(p))) == 0); \\ Michel Marcus, Jun 14 2021
CROSSREFS
KEYWORD
nonn,base
AUTHOR
Ctibor O. Zizka, Jun 14 2021
STATUS
approved