OFFSET
1,2
COMMENTS
If p is prime, a(p) = Sum_{p|p} tau(p #) = tau(p) * tau(prevprime(p)) * ... * tau(2) = 2 * 2 * ... * 2 ( pi(p) times ) = 2^pi(p).
FORMULA
G.f.: Sum_{k>=1} 2^k * x^prime(k) / (1 - x^prime(k)). - Ilya Gutkovskiy, Aug 18 2021
EXAMPLE
a(14) = Sum_{p|14} tau(p #) = tau(2 #) + tau(7 #) = 2^pi(2) + 2^pi(7) = 2^1 + 2^4 = 18.
MATHEMATICA
Table[Sum[DivisorSigma[0, Product[i^(PrimePi[i] - PrimePi[i - 1]), {i, k}]](PrimePi[k] - PrimePi[k - 1]) (1 - Ceiling[n/k] + Floor[n/k]), {k, n}], {n, 80}]
CROSSREFS
KEYWORD
nonn
AUTHOR
Wesley Ivan Hurt, Jun 13 2021
STATUS
approved