login
A345284
a(n) = Sum_{p|n} (p #).
1
0, 2, 6, 2, 30, 8, 210, 2, 6, 32, 2310, 8, 30030, 212, 36, 2, 510510, 8, 9699690, 32, 216, 2312, 223092870, 8, 30, 30032, 6, 212, 6469693230, 38, 200560490130, 2, 2316, 510512, 240, 8, 7420738134810, 9699692, 30036, 32, 304250263527210, 218, 13082761331670030, 2312, 36
OFFSET
1,2
FORMULA
G.f.: Sum_{k>=1} prime(k)# * x^prime(k) / (1 - x^prime(k)). - Ilya Gutkovskiy, Sep 10 2021
a(prime(n)) = A002110(n). - Wesley Ivan Hurt, Oct 18 2021
EXAMPLE
a(14) = Sum_{p|14} p # = 2 # + 7 # = 2 + 7*5*3*2 = 212.
MATHEMATICA
Table[Sum[Product[i^(PrimePi[i] - PrimePi[i - 1]), {i, k}] (PrimePi[k] - PrimePi[k - 1]) (1 - Ceiling[n/k] + Floor[n/k]), {k, n}], {n, 60}]
CROSSREFS
Sequence in context: A366572 A144845 A346093 * A375250 A200563 A284577
KEYWORD
nonn
AUTHOR
Wesley Ivan Hurt, Jun 12 2021
STATUS
approved