login
Number of rows with the value "true" in the Kleene truth tables of all bracketed formulae with n distinct propositions p1, ..., pn connected by the binary connective of implication.
2

%I #9 May 21 2022 08:29:25

%S 1,5,30,229,1938,17530,165852,1621133,16242474,165923854,1721675460,

%T 18095802306,192256162740,2061367432212,22276538889912,

%U 242387718986301,2653259550491034,29198054511893638,322835545567447092,3584671507685675894,39955514234936341980,446897274497509974508

%N Number of rows with the value "true" in the Kleene truth tables of all bracketed formulae with n distinct propositions p1, ..., pn connected by the binary connective of implication.

%H G. C. Greubel, <a href="/A345190/b345190.txt">Table of n, a(n) for n = 1..925</a>

%H Volkan Yildiz, <a href="https://arxiv.org/abs/2106.04728">Notes on algebraic structure of truth tables of bracketed formulae connected by implications</a>, arXiv:2106.04728 [math.CO], 2021.

%F G.f.: (4-sqrt(1-12*x)-sqrt(5+24*x+4*sqrt(1-12*x)))/6.

%F a(n) = 2*A005159(n-1) - A345189(n). - _G. C. Greubel_, May 20 2022

%t CoefficientList[Series[(4 -Sqrt[1-12*x] -Sqrt[5 +24*x +4*Sqrt[1-12*x]])/6, {x, 0, 40}], x]//Rest (* _G. C. Greubel_, May 20 2022 *)

%o (PARI) my(x='x+O('x^30)); Vec((4-sqrt(1-12*x)-sqrt(5+24*x+4*sqrt(1-12*x)))/6)

%o (SageMath)

%o def A345190_list(prec):

%o P.<x> = PowerSeriesRing(ZZ, prec)

%o return P( (4-sqrt(1-12*x)-sqrt(5+24*x+4*sqrt(1-12*x)))/6 ).list()

%o a=A345190_list(40); a[1:] # _G. C. Greubel_, May 20 2022

%Y Cf. A005159 (unknown rows, shifted), A025226 (all rows), A345189 (false rows).

%K nonn

%O 1,2

%A _Michel Marcus_, Jun 10 2021