login
A344914
T(n, k) = 2^(3*k)*(n - 3*k)!, for n >= 0 and 0 <= k <= floor(n/3). Triangle read by rows.
1
1, 1, 2, 6, 8, 24, 8, 120, 16, 720, 48, 64, 5040, 192, 64, 40320, 960, 128, 362880, 5760, 384, 512, 3628800, 40320, 1536, 512, 39916800, 322560, 7680, 1024, 479001600, 2903040, 46080, 3072, 4096, 6227020800, 29030400, 322560, 12288, 4096
OFFSET
0,3
EXAMPLE
[ 0] 1;
[ 1] 1;
[ 2] 2;
[ 3] 6, 8;
[ 4] 24, 8;
[ 5] 120, 16;
[ 6] 720, 48, 64;
[ 7] 5040, 192, 64;
[ 8] 40320, 960, 128;
[ 9] 362880, 5760, 384, 512;
[10] 3628800, 40320, 1536, 512;
[11] 39916800, 322560, 7680, 1024;
[12] 479001600, 2903040, 46080, 3072, 4096;
MAPLE
T := (n, k) -> 2^(3*k)*(n-3*k)!: seq(seq(T(n, k), k = 0..n/3), n = 0..13);
MATHEMATICA
Table[2^(3k) (n-3k)!, {n, 0, 20}, {k, 0, Floor[n/3]}]//Flatten (* Harvey P. Dale, Feb 13 2022 *)
CROSSREFS
Sequence in context: A153802 A217019 A240644 * A068496 A340810 A334898
KEYWORD
nonn,tabf
AUTHOR
Peter Luschny, Jun 06 2021
STATUS
approved