Reminder: The OEIS is hiring a new managing editor, and the application deadline is January 26.
%I #23 Mar 12 2024 09:42:06
%S 2,3,31,43,37,7,709,8941,1723,163,1801,13,32077430821,313296437089,
%T 106776242048569,3345710409941689
%N a(n) is the least p such that p + 5*k*(k+1) is prime for 0 <= k <= n-1 but not for k=n.
%C a(n) is the least p such that p, p+10, p+10+20, ..., p+10+20+...+10*(n-1) are prime but p+10+20+...+10*n is composite.
%e a(4) = 43 because 43, 43+10=53, 53+20=73, 73+30=103 are prime but 103+40=143 is composite, and no number smaller than 43 works.
%p f:= proc(p) local k;
%p for k from 1 while isprime(p+k*(k+1)*5) do od:
%p k
%p end proc:
%p A:= Vector(12): count:= 0:
%p for i from 1 while count < 12 do
%p v:= f(ithprime(i));
%p if A[v] = 0 then count:= count+1; A[v]:= ithprime(i) fi
%p od:
%p convert(A,list);
%t Table[p=1;m=5;Monitor[Parallelize[While[True,If[And[MemberQ[PrimeQ[Table[p+m*k*(k+1),{k,0,n-1}]],False]==False,PrimeQ[p+m*n*(n+1)]==False],Break[]];p++];p],p],{n,1,10}] (* _J.W.L. (Jan) Eerland_, Mar 08 2024 *)
%Y Cf. A164926.
%K nonn,more
%O 1,1
%A _J. M. Bergot_ and _Robert Israel_, May 27 2021
%E a(13)-a(14) from _Martin Ehrenstein_, May 28 2021
%E a(15)-a(16) from _Bert Dobbelaere_, Jun 07 2021