login
A344736
a(n) is the least p such that p + 5*k*(k+1) is prime for 0 <= k <= n-1 but not for k=n.
0
2, 3, 31, 43, 37, 7, 709, 8941, 1723, 163, 1801, 13, 32077430821, 313296437089, 106776242048569, 3345710409941689
OFFSET
1,1
COMMENTS
a(n) is the least p such that p, p+10, p+10+20, ..., p+10+20+...+10*(n-1) are prime but p+10+20+...+10*n is composite.
EXAMPLE
a(4) = 43 because 43, 43+10=53, 53+20=73, 73+30=103 are prime but 103+40=143 is composite, and no number smaller than 43 works.
MAPLE
f:= proc(p) local k;
for k from 1 while isprime(p+k*(k+1)*5) do od:
k
end proc:
A:= Vector(12): count:= 0:
for i from 1 while count < 12 do
v:= f(ithprime(i));
if A[v] = 0 then count:= count+1; A[v]:= ithprime(i) fi
od:
convert(A, list);
MATHEMATICA
Table[p=1; m=5; Monitor[Parallelize[While[True, If[And[MemberQ[PrimeQ[Table[p+m*k*(k+1), {k, 0, n-1}]], False]==False, PrimeQ[p+m*n*(n+1)]==False], Break[]]; p++]; p], p], {n, 1, 10}] (* J.W.L. (Jan) Eerland, Mar 08 2024 *)
CROSSREFS
Cf. A164926.
Sequence in context: A110456 A128348 A029973 * A347332 A054551 A049065
KEYWORD
nonn,more
AUTHOR
J. M. Bergot and Robert Israel, May 27 2021
EXTENSIONS
a(13)-a(14) from Martin Ehrenstein, May 28 2021
a(15)-a(16) from Bert Dobbelaere, Jun 07 2021
STATUS
approved