login
Square array T(n,k), n >= 1, k >= 1, read by antidiagonals downwards, where T(n,k) = Sum_{j=1..n} (-1)^(j+1) * floor(n/j)^k.
8

%I #26 May 30 2021 06:38:39

%S 1,1,1,1,3,3,1,7,9,2,1,15,27,12,4,1,31,81,56,22,4,1,63,243,240,118,30,

%T 6,1,127,729,992,610,196,44,4,1,255,2187,4032,3094,1230,324,48,7,1,

%U 511,6561,16256,15562,7564,2336,448,71,7,1,1023,19683,65280,77998,45990,16596,3840,685,83,9

%N Square array T(n,k), n >= 1, k >= 1, read by antidiagonals downwards, where T(n,k) = Sum_{j=1..n} (-1)^(j+1) * floor(n/j)^k.

%H Seiichi Manyama, <a href="/A344726/b344726.txt">Antidiagonals n = 1..140, flattened</a>

%F G.f. of column k: (1/(1 - x)) * Sum_{j>=1} (j^k - (j - 1)^k) * x^j/(1 + x^j).

%F T(n,k) = Sum_{j=1..n} Sum_{d|j} (-1)^(j/d + 1) * (d^k - (d - 1)^k).

%e Square array begins:

%e 1, 1, 1, 1, 1, 1, ...

%e 1, 3, 7, 15, 31, 63, ...

%e 3, 9, 27, 81, 243, 729, ...

%e 2, 12, 56, 240, 992, 4032, ...

%e 4, 22, 118, 610, 3094, 15562, ...

%e 4, 30, 196, 1230, 7564, 45990, ...

%t T[n_, k_] := Sum[(-1)^(j + 1) * Quotient[n, j]^k, {j, 1, n}]; Table[T[k, n - k + 1], {n, 1, 11}, {k, 1, n}] // Flatten (* _Amiram Eldar_, May 27 2021 *)

%o (PARI) T(n, k) = sum(j=1, n, (-1)^(j+1)*(n\j)^k);

%o (PARI) T(n, k) = sum(j=1, n, sumdiv(j, d, (-1)^(j/d+1)*(d^k-(d-1)^k)));

%Y Columns k=1..5 give A059851, A344720, A344721, A344722, A344723.

%Y T(n,n) gives A344724.

%Y Cf. A344725.

%K nonn,tabl

%O 1,5

%A _Seiichi Manyama_, May 27 2021