OFFSET
1,3
LINKS
Seiichi Manyama, Antidiagonals n = 1..140, flattened
FORMULA
G.f. of column k: (1/(1 - x)) * Sum_{j>=1} (j^k - (j - 1)^k) * x^j/(1 - x^j).
T(n,k) = Sum_{j=1..n} Sum_{d|j} d^k - (d - 1)^k.
EXAMPLE
Square array begins:
1, 1, 1, 1, 1, 1, ...
3, 5, 9, 17, 33, 65, ...
5, 11, 29, 83, 245, 731, ...
8, 22, 74, 274, 1058, 4162, ...
10, 32, 136, 644, 3160, 15692, ...
14, 52, 254, 1396, 8054, 47452, ...
MATHEMATICA
T[n_, k_] := Sum[Quotient[n, j]^k, {j, 1, n}]; Table[T[k, n - k + 1], {n, 1, 10}, {k, 1, n}] // Flatten (* Amiram Eldar, May 27 2021 *)
PROG
(PARI) T(n, k) = sum(j=1, n, (n\j)^k);
(PARI) T(n, k) = sum(j=1, n, sumdiv(j, d, d^k-(d-1)^k));
(Python)
from math import isqrt
from itertools import count, islice
def A344725_T(n, k): return -(s:=isqrt(n))**(k+1)+sum((q:=n//w)*(w**k-(w-1)**k+q**(k-1)) for w in range(1, s+1))
def A344725_gen(): # generator of terms
return (A344725_T(k+1, n-k) for n in count(1) for k in range(n))
CROSSREFS
KEYWORD
nonn,tabl
AUTHOR
Seiichi Manyama, May 27 2021
STATUS
approved