login
A344722
a(n) = Sum_{k=1..n} (-1)^(k+1) * floor(n/k)^4.
2
1, 15, 81, 240, 610, 1230, 2336, 3840, 6371, 9455, 14097, 19615, 27441, 36205, 48849, 61874, 79860, 99470, 124816, 150846, 186498, 221646, 267232, 313840, 373059, 431599, 508595, 581009, 673635, 767835, 881357, 989615, 1131667, 1264111, 1429875, 1590464, 1785010
OFFSET
1,2
LINKS
FORMULA
a(n) = Sum_{k=1,..n} Sum_{d|k} (-1)^(k/d + 1) * (d^4 - (d - 1)^4).
G.f.: (1/(1 - x)) * Sum_{k>=1} (k^4 - (k - 1)^4) * x^k/(1 + x^k).
a(n) ~ 7 * Pi^4 * n^4 / 720. - Vaclav Kotesovec, May 28 2021
MATHEMATICA
a[n_] := Sum[(-1)^(k + 1) * Quotient[n, k]^4, {k, 1, n}]; Array[a, 50] (* Amiram Eldar, May 27 2021 *)
Accumulate[Table[3*DivisorSigma[0, n] - 2*DivisorSigma[0, 2*n] - 8*DivisorSigma[1, n] + 4*DivisorSigma[1, 2*n] + 9*DivisorSigma[2, n] - 3*DivisorSigma[2, 2*n] - 5*DivisorSigma[3, n] + DivisorSigma[3, 2*n], {n, 1, 50}]] (* Vaclav Kotesovec, May 28 2021 *)
PROG
(PARI) a(n) = sum(k=1, n, (-1)^(k+1)*(n\k)^4);
(PARI) a(n) = sum(k=1, n, sumdiv(k, d, (-1)^(k/d+1)*(d^4-(d-1)^4)));
(PARI) my(N=40, x='x+O('x^N)); Vec(sum(k=1, N, (k^4-(k-1)^4)*x^k/(1+x^k))/(1-x))
CROSSREFS
Column k=4 of A344726.
Cf. A318743.
Sequence in context: A102360 A375998 A372537 * A309336 A266288 A213552
KEYWORD
nonn
AUTHOR
Seiichi Manyama, May 27 2021
STATUS
approved