login
A344700
Numbers k for which A306927(k) [= A001615(k)-k] is a multiple of A344705(k) [= A001615(k)-A001065(k)], and their quotient is nonnegative.
6
1, 6, 24, 28, 168, 496, 864, 1080, 1520, 1836, 2016, 2088, 2112, 2520, 2912, 2976, 3000, 3024, 3240, 3800, 8128, 9000, 11088, 11232, 11448, 14160, 14688, 16920, 17028, 18360, 19872, 20520, 20880, 25280, 25488, 27552, 29376, 30800, 31200, 31320, 31968, 35400, 39240, 44064, 48768, 49896, 50760, 51480, 51660, 52200, 55680
OFFSET
1,2
COMMENTS
Numbers k for which A344704(k) = A344705(k), i.e., numbers k such that gcd(A001615(k)-k, A001615(k)-A001065(k)) = A001615(k) - A001065(k).
Note that A306927(k) is always nonnegative, but A344705(k) = A033879(k) + A306927(k) gets also negative values. Number k is perfect only when A033879(k) = A344705(k) - A306927(k) = 0, that is, when A344705(k) = A306927(k), which necessitates that A306927(k) should be a multiple of A344705(k), and their quotient should be nonnegative (actually = +1).
In the range 1 .. 2^31 there are 782 such numbers, of which only the initial 1 is odd.
PROG
(PARI)
A001615(n) = if(1==n, n, my(f=factor(n)); prod(i=1, #f~, f[i, 1]^f[i, 2] + f[i, 1]^(f[i, 2]-1))); \\ After code in A001615
isA344700(n) = { my(t=A001615(n), s=sigma(n), u = (n+t)-s); (gcd(t-n, u)==u); };
\\ Alternatively as:
isA344700(n) = { my(t=A001615(n), s=sigma(n), u = (n+t)-s); ((u>0)&&(0==((t-n)%u))); };
CROSSREFS
Cf. A000203, A001065, A001615, A033879, A244963, A306927, A344704, A344705, A344752 (gives the quotient A306927(k)/A344705(k) computed for these terms), A344753.
Cf. A000396 (subsequence).
Cf. also A344754, A344755.
Sequence in context: A226476 A216793 A294900 * A064510 A335736 A228383
KEYWORD
nonn
AUTHOR
Antti Karttunen, May 28 2021
STATUS
approved