login
A344643
Numbers that are the sum of five positive fifth powers in exactly one way.
6
5, 36, 67, 98, 129, 160, 247, 278, 309, 340, 371, 489, 520, 551, 582, 731, 762, 793, 973, 1004, 1028, 1059, 1090, 1121, 1152, 1215, 1270, 1301, 1332, 1363, 1512, 1543, 1574, 1754, 1785, 1996, 2051, 2082, 2113, 2144, 2293, 2324, 2355, 2535, 2566, 2777, 3074, 3105, 3129, 3136, 3160, 3191, 3222, 3253, 3316, 3347, 3371, 3402, 3433, 3464, 3558, 3613, 3644, 3675, 3855, 3886, 4128
OFFSET
1,1
COMMENTS
Differs from A003350 at term 67 because 4097 = 1^5 + 4^5 + 4^5 + 4^5 + 4^5 = 3^5 + 3^5 + 3^5 + 3^5 + 5^5.
LINKS
David Consiglio, Jr., Table of n, a(n) for n = 1..20000
EXAMPLE
67 is a term because 67 = 1^5 + 1^5 + 1^5 + 2^5 + 2^5.
PROG
(Python)
from itertools import combinations_with_replacement as cwr
from collections import defaultdict
keep = defaultdict(lambda: 0)
power_terms = [x**5 for x in range(1, 500)]
for pos in cwr(power_terms, 5):
tot = sum(pos)
keep[tot] += 1
rets = sorted([k for k, v in keep.items() if v == 1])
for x in range(len(rets)):
print(rets[x])
CROSSREFS
KEYWORD
nonn
AUTHOR
EXTENSIONS
Name clarified by Patrick De Geest, Dec 24 2024
STATUS
approved