%I #8 Jun 06 2021 08:16:21
%S 0,0,0,0,0,0,0,0,0,0,1,1,2,3,4,6,7,11,12,17,1,13,9,16,11,20,14,24,16,
%T 25,9,27,14,29,19,32,16,34,19,37,11,32,17,38,19,32,22,41,19,40,14,38,
%U 22,41,22,39,18,44,26,46,8,46,24,38,23,40,21,48,28,42,12
%N Number of knapsack partitions of n with largest part 10.
%C An integer partition is knapsack if every distinct submultiset has a different sum.
%C I computed terms a(n) for n = 0..50000 and the subsequence a(162)-a(2681) of length 2520 is repeated continuously.
%H Fausto A. C. Cariboni, <a href="/A344635/b344635.txt">Table of n, a(n) for n = 0..3000</a>
%e The initial nonzero values count the following partitions:
%e 10: (10)
%e 11: (10,1)
%e 12: (10,1,1), (10,2)
%e 13: (10,1,1,1), (10,2,1), (10,3)
%Y Cf. A108917, A275972, A326017, A326034, A342684, A343321, A344310, A344340, A344412, A344625.
%K nonn
%O 0,13
%A _Fausto A. C. Cariboni_, May 25 2021