login
A344564
a(n) = [x^n] -3/(2*x - 1)^5.
1
3, 30, 180, 840, 3360, 12096, 40320, 126720, 380160, 1098240, 3075072, 8386560, 22364160, 58490880, 150405120, 381026304, 952565760, 2353397760, 5752750080, 13927710720, 33426505728, 79586918400, 188114534400, 441660211200, 1030540492800, 2390853943296
OFFSET
0,1
FORMULA
a(n) = 2*(n + 4)*a(n - 1) / n for n >= 2.
a(n) = 2^(n - 3)*(n + 1)*(n + 2)*(n + 3)*(n + 4).
a(n) = n! * [x^n] (2*x^4 + 16*x^3 + 36*x^2 + 24*x + 3)*exp(2*x).
a(n) ~ 2^(n - 3) * n^4.
MAPLE
a := n -> 2^(n - 3)*(n + 1)*(n + 2)*(n + 3)*(n + 4): seq(a(n), n = 0..25);
CROSSREFS
Row sums of A344565.
Sequence in context: A127868 A002463 A360645 * A013281 A013274 A013279
KEYWORD
nonn
AUTHOR
Peter Luschny, May 29 2021
STATUS
approved