login
A344472
Record values in A002324.
4
1, 2, 3, 4, 6, 8, 9, 12, 16, 18, 24, 32, 36, 48, 64, 72, 96, 108, 128, 144, 160, 192, 216, 256, 288, 320, 384, 432, 512, 576, 640, 768, 864, 1024, 1152, 1280, 1536, 1728, 2048, 2304, 2560, 3072, 3456, 3840, 4096, 4608, 5120, 5184, 6144, 6912, 7680, 8192, 9216
OFFSET
1,2
COMMENTS
Also numbers k such that A343771(m) > A343771(k) for all m > k.
LINKS
FORMULA
a(n) = A344471(n+1)/6.
a(n) = A000005(A230655(n+1)) = A002324(A230655(n+1)).
EXAMPLE
8 is a term because the circle with radius sqrt(1729) centered at the origin hits exactly 6*8 = 48 points in the A_2 lattice, and any circle with radius < sqrt(1729) centered at the origin hits fewer than 48 points.
PROG
(PARI) my(v=list_A344473(10^15), rec=0); for(n=1, #v, if(numdiv(v[n])>rec, rec=numdiv(v[n]); print1(rec, ", "))) \\ see program for A344473
CROSSREFS
Records of Sum_{d|n} kronecker(m, d): this sequence (m=-3), A344470 (m=-4), A279542 (m=-6).
Sequence in context: A115422 A364295 A364494 * A018528 A018376 A018302
KEYWORD
nonn
AUTHOR
Jianing Song, May 20 2021
STATUS
approved