login

Reminder: The OEIS is hiring a new managing editor, and the application deadline is January 26.

Primes that occur as p + (digit product of p) for p in A092518.
2

%I #11 May 24 2021 00:23:12

%S 29,47,67,107,109,181,251,293,331,347,431,443,457,491,547,593,631,653,

%T 659,673,743,823,827,839,929,971,977,1091,1129,1181,1231,1237,1279,

%U 1321,1327,1423,1433,1447,1471,1483,1493,1499,1553,1559,1579,1601,1777,1823,1867,1871,1951,1993,2113,2137

%N Primes that occur as p + (digit product of p) for p in A092518.

%C Terms are unique and in numerical order.

%C There are terms that correspond to more than one member of A092518, such as 827 = 683+6*8*3 = 743+7*4*3.

%H Robert Israel, <a href="/A344466/b344466.txt">Table of n, a(n) for n = 1..10000</a>

%e a(4) = 107 is a term because 83 = A092518(5) and 107 = 83+8*3.

%p N:= 10000: # to get terms <= N

%p S:= {}:

%p p:= 1:

%p do

%p p:= nextprime(p);

%p if p >= N then break fi;

%p L:= convert(p,base,10);

%p if member(0,L) then next fi;

%p q:= p + convert(L,`*`);

%p if q <= N and isprime(q) then

%p S:= S union {q};

%p fi

%p od:

%p sort(convert(S,list));

%Y Cf. A053666, A092518.

%K nonn,base

%O 1,1

%A _J. M. Bergot_ and _Robert Israel_, May 20 2021