login
A344418
a(n) = n*a(n-1) + n^(1+n mod 2), a(0) = 0.
2
0, 1, 4, 13, 56, 281, 1692, 11845, 94768, 852913, 8529140, 93820541, 1125846504, 14636004553, 204904063756, 3073560956341, 49176975301472, 836008580125025, 15048154442250468, 285914934402758893, 5718298688055177880, 120084272449158735481, 2641853993881492180604
OFFSET
0,3
LINKS
FORMULA
E.g.f.: (x+1)*sinh(x)/(1-x).
a(n) = A344317(n) - n! = A344317(n) - A000142(n).
a(n) = A155521(n-1) + A344419(n) for n > 0.
Lim_{n-> infinity} a(n)/n! = 2*sinh(1) = 2*A073742 = e-1/e = A174548. - Amrit Awasthi, May 20 2021
MAPLE
a:= proc(n) a(n):= n*a(n-1) + n^(1+n mod 2) end: a(0):= 0:
seq(a(n), n=0..23);
KEYWORD
nonn
AUTHOR
Alois P. Heinz, May 17 2021
STATUS
approved