

A344281


Integers m for which F (mod m) has rotational symmetry.


1



2, 3, 5, 6, 7, 9, 10, 13, 14, 17, 18, 23, 25, 26, 27, 34, 37, 41, 43, 46, 47, 49, 50, 53, 54, 61, 65, 67, 73, 74, 81, 82, 83, 85, 86, 89, 94, 97, 98, 103, 106, 107, 109, 113, 122, 123, 125, 127, 129, 130, 134, 137, 146, 149, 157, 161, 162, 163, 166, 167, 169, 170
(list;
graph;
refs;
listen;
history;
text;
internal format)



OFFSET

1,1


COMMENTS

Flanagan et al. define F (mod m) as the set of points [x_i, y_i] (mod m) where x_i = Fibonacci(i) and y_i = Fibonacci(i+1).


LINKS

Table of n, a(n) for n=1..62.
Patrick Flanagan, Marc S. Renault, and Josh Updike, Symmetries of Fibonacci Points, Mod m, Fibonacci Quart. 53 (2015), no. 1, 3441. See p. 5.


PROG

(PARI) \\ where pisano(n) is A001175
hasrot(m) = {if (m==1, return (0)); if (m==2, return (1)); my(j = pisano(m)/2); my(vf = [fibonacci(j), fibonacci(j+1)]); Mod(vf, m) == [0, 1]; }


CROSSREFS

Cf. A000045, A001175, A275124, A344258.
Sequence in context: A158746 A062470 A179460 * A171886 A343238 A018559
Adjacent sequences: A344278 A344279 A344280 * A344282 A344283 A344284


KEYWORD

nonn


AUTHOR

Michel Marcus, May 14 2021


STATUS

approved



