login
A344281
Integers m for which F (mod m) has rotational symmetry.
1
2, 3, 5, 6, 7, 9, 10, 13, 14, 17, 18, 23, 25, 26, 27, 34, 37, 41, 43, 46, 47, 49, 50, 53, 54, 61, 65, 67, 73, 74, 81, 82, 83, 85, 86, 89, 94, 97, 98, 103, 106, 107, 109, 113, 122, 123, 125, 127, 129, 130, 134, 137, 146, 149, 157, 161, 162, 163, 166, 167, 169, 170
OFFSET
1,1
COMMENTS
Flanagan et al. define F (mod m) as the set of points [x_i, y_i] (mod m) where x_i = Fibonacci(i) and y_i = Fibonacci(i+1).
LINKS
Patrick Flanagan, Marc S. Renault, and Josh Updike, Symmetries of Fibonacci Points, Mod m, Fibonacci Quart. 53 (2015), no. 1, 34-41. See p. 5.
PROG
(PARI) \\ where pisano(n) is A001175
hasrot(m) = {if (m==1, return (0)); if (m==2, return (1)); my(j = pisano(m)/2); my(vf = [fibonacci(j), fibonacci(j+1)]); Mod(vf, m) == [0, -1]; }
CROSSREFS
KEYWORD
nonn
AUTHOR
Michel Marcus, May 14 2021
STATUS
approved