login
A344238
Numbers that are the sum of five fourth powers in two or more ways.
8
260, 275, 340, 515, 884, 1555, 2595, 2660, 2675, 2690, 2705, 2755, 2770, 2835, 2930, 2945, 3010, 3185, 3299, 3314, 3379, 3554, 3923, 3970, 3985, 4050, 4115, 4145, 4160, 4210, 4225, 4290, 4355, 4400, 4465, 4594, 4769, 4834, 5075, 5090, 5155, 5265, 5330, 5395, 5440, 5505, 5570, 5699, 6370, 6545, 6580, 6595, 6610
OFFSET
1,1
LINKS
David Consiglio, Jr., Table of n, a(n) for n = 1..20000
EXAMPLE
340 = 1^4 + 1^4 + 1^4 + 3^4 + 4^4
= 2^4 + 3^4 + 3^4 + 3^4 + 3^4
so 340 is a term of this sequence.
PROG
(Python)
from itertools import combinations_with_replacement as cwr
from collections import defaultdict
keep = defaultdict(lambda: 0)
power_terms = [x**4 for x in range(1, 50)]
for pos in cwr(power_terms, 5):
tot = sum(pos)
keep[tot] += 1
rets = sorted([k for k, v in keep.items() if v >= 2])
for x in range(len(rets)):
print(rets[x])
KEYWORD
nonn
AUTHOR
STATUS
approved